S ES 2014
Tenth Anniversary Scientific Conference with International Participation
SPACE, ECOLOGY, SAFETY
12 — 14 November 2014, Sofia, Bulgaria

METHOD OF THREAD MANAGEMENT IN A MULTI-POOL OF THREADS
ENVIRONMENTS

Atanas Atanassov

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: At_M_Atanassov@yahoo.com

Keywords: parallel calculations, pool of threads model; multi-physic models simulations.

Abstract: Simulations of space missions and experiments are connected sometime with application of
irregular algorithms. When it is hard to solve by conventional serial codes, is necessary to apply parallel
calculations. Pool of threads program model is very flexible and convenient for cope with parallelization and load-
imbalance when adaptive and irregular problem are solved.

A situation is possible when some problem solvers (pools of threads) are initiated for solving different
heterogeneous classes of problems. Every solver is based on “pool of thread” model. Because of the
heterogeneity and irregularity of every class of problems the calculation time is different for every one of applied
solvers. If the different solvers are started simultaneously one of them can finish before the rest. Then all threads
associated with it will transit in waiting state and some processor cores will be free.

An approach for redistribution of active threads (processors) between completed solvers and the rest is
realized. “Union of pools” program model is presented.

ANHAMWYHO NMNAHUPAHE HA N3YUCITTIEHUATA OCHOBAHU
HA CbCTABHU MOOENU

ATaHac ATaHacoB

UHecmumym 3a kocMmuydecku uscnedeaHusi U mexHonoauu — bnzapcka akademusi Ha Haykume
e-mail: At_M_Atanassov@yahoo.com

Pe3srome: Cumynayuume Ha KOCMUYECKU MUCUU U €KCriepuUMeHmuU ca C8bp3aHu MoHsKoe2a C npurnasaHe
Ha upeeynspHu anzopummu. lNMpunazaHemo Ha napasnenHu u34ucrieHuss e Heobxodumo Kozamo 3adaqume ca
mpyOHu 3a 0a 6b0am peweHU ¢ KOHBEHUUOHaIHU cepuliHu kodose. pozpamHusm modesn ,rnyn om mpedose” e
ebekag U ydobeH 3a rocmueaHe Ha napasnenusayusi U egeKkmusHOCM 3puU pelwiasaHe Ha upeaynsipHu
uayucnumersnHu 3adayu.

Bb3moxHO e eduH unu noseye uszyucriumesniHu Modynu OCHogaHU Ha modena ,yn om mpedosge” da
6b0am uHUUUUPEHU MHO20KpamHO 8 paMmkume Ha eOHa cuMyrayusi 3a pewasaHe Ha pa3HOpPOOHU Kriacoge om
3adayu. Nopadu pasHopodOHOCMMa Ha pewagaHume fnpobremu u34yucIumenIHomo epeme 3a 8ceku Modyr uwe e
pasnuyHo. Ako pasnu4yHume Modynu ce cmapmupam eOHO8PEMEHHO OOUH OmM MmsX We C8bpwiu ompedeHume
u3yucneHus npedu ocmaxanume. Tozaga 8CuYKU acoyuupaHu ¢ Heeo mpedose wie MPemMuHam 8 CbCMosHUEe Ha
YyakaHe U Hsikou rpoyecopu we 60am ce0600HU.

Peanu3supaH e nodxod 3a npepasnpedensaHe Ha akmusHu mpedose (npouecopu) Mexdy 3asbpuiunume
modynu u ocmaHanume. [pedcmaseH e rpozpameH moden ,06eduHeHue Ha rnynoee om mpedose.”

Introduction

The satellites mission design, analysis and control demand detailed orbital and payload
simulation. Complex simulation models may contain different sub models [1, 2, 3, 4, 5, 6], and their
solving is based on application of numerical methods. Some problems are irregular and multi-
dimensional. An orbital and payload parameters are determined by repeatedly simulation runs on
different stages of mission design. Different heavy calculations are involved on every stage of
preparation and control of satellite missions. Parallelization of problem solving algorithms is modern
approach for reducing processor time and cost of commercial and scientific projects.

241

Multi-core processors are already basic component in the modern computers and
workstations. Workstations with two or four multiprocessors are on the marked already. Thereby multi-
processor shared memory systems are accessible and applicable tools in scientific investigations.
Many authors are occupied with development of algorithms for commercial off the shelf computers [7,
8, 9].

A parallel ordinary differential equation systems integrator for satellite motion problems was
developed [10]. This integrator is possible to be started multiple times as different simultaneously
working actual integrators solving different classes of problems. Besides, parallel situation problems
solver was developed too [11]. Other solvers could be developed analogously based on thread
parallelization and applying pool of threads.

An approach for redistribution of processor cores among parallel and simultaneously working
problem solvers is proposed in the present article. It is based on “union of thread pools” model. This
model allows simultaneously execution of different parallel solvers based on thread pool program
model and collective using of processor cores in shared memory systems.

Parallelization based on “thread of pool” model

In many cases, one calculation problem can be divided on independent sub-problems. They
can be with different difficulties and to demand different processor time for their solution. Adaptive
models are possible in field of computer simulation which difficulties vary in the course of simulation
time or different mathematical and physical models or calculation methods are applied depending from
time varying parameters. The application of used models and methods is adapted to modeled
conditions. In other cases different models are applied to different objects which participate in the
simulation. An example is explained in [10] when different integration methods are used on different
parts of satellite trajectories on elliptic orbits; different perturbation forces models are used for
particular objects depending from high of orbits in the same time. Such type’s calculations are named
irregular. We have irregular calculations too in the case of solving different situation problem, every of
which is connected from different restrictions [11].

Different program models [12, 13] are used for approaching parallel calculations depending
from specifics of algorithms. The aims are different sub problems or part of them to be solved
simultaneously on different processors or processor cores. One such model is “pool of threads”. The
set of threads are mutually synchronized. They could not solve the same sub-problem (race condition)
and work to “running out of” all sub problems.

A parallel integrator for solving set of ordinary differential equations systems based on pool of
treads is presented in [10]. A multiple parallel starts of this integrator in the frame of one simulation
model is possible, as each integrator is initiated for solving different type of problems (satellites motion
for one and space debris motion for other). The two integrators executed trajectory calculations with
different difficulties for different type of objects in the frame of every integration time step. In general,
consecutively execution of calculations for the two integrators is possible. A possibility for
simultaneous starting of the two integrators and parallel calculations will be presented in this work.

Ideology of union of thread pools

When some solvers based on “pool of threads” parallelism are started simultaneously they
compete for available processors or processor cores. The total number of threads for all solvers
should be less than the number of processors. Every solver is created to solve specific kind of
problems with different difficulty. By partitioning one problem is possible to be solved collectively by
participation of all threads of one solver.

There are two ways for solving problems from different solvers. The first one is “one after
another” in sequential mode. If one of problems is not enough difficult for respective solver, pool with
less than available processors core threads is initialized. In this case the free processors will be idle.
All solvers work in parallel and competitively dividing the available processors. Because of processor
time for one of problem can be shorter than others, the respective solver finishes his calculations
before the rests and its threads transit to waiting conditions and will be started in the next time step.
The redistribution of respective processors between the rests of solvers could be possible. Then will
be better released processors to be used from other solvers. It is possible if this solver has inactive
threads which could be activated later on.

242

Core; Core, Cores Corey

e

ey -

(S]]

oYY Y Y . Y .Y .Y __N_

v

Fig. 1. An illustration of union of two pools. The broken lines present the threads of first finished solver. t;; and tr,
are finishing times for the two solvers respectively

“Pool of thread” model is abstraction allowing dynamic scheduling of threads’ execution for
solving one big problem presented as set of sub-problems. The “threads pools union” is a higher
level abstraction, which could allow joining the work of set of pools and optimizing of the entire
calculation process.

Union of threads pools creation

A model “union of pools” is proposed for realization of above pointed idea, because the
solvers are based on “pool of threads” model. “Union of pools” is model where the different pools are
created with initial thread’s number for every one of them. In the beginning only part of the threads are
started, so that total number is optimal in relation to available processors. In the course of calculations,
when one of solver finishes the problem its threads transit in waiting condition and could be set in
suspended state to release processors (or processor cores). These processors could be redistributed
in the frame of pools of the union.

Every “union of pools” is fully determined by relative attributes necessary for his control. These
attributes are stored in information array. The creation of “union of pools” is possible after pool’s
initialization or in our case after all integrators’ creation. The all pool’'s attributes are delivered to
special subroutine InitUnionPools which store them in the information arrays of the union.

The “union of pools” creation is made by calling subroutine InitUnionPools:

CALL InitUnionPools(Al_2_thread par,num_Al_2_ threads,6,Al 2 glb_counter,union_atr)
CALL InitUnionPools(Al_1_thread par,num_Al_1 threads,2,Al_1 glb_counter,union_atr)

Fig. 1. A pools’ union creation with two pools is shown

The meaning of actual parameters is the next:

- The first parameter “Al_2_thread_par” represent array containing the pool's parameters.

- The second parameter passes the number of threads in the pool

- The third parameter points the number of threads, which will be active from beginning- in
this case 6.

- The next parameter passes the counter address of the pool. This is global variable which
serve for pool control [10].

- The last parameter represent one-dimensional array with two elements. The first one is
address of two-dimensional (2-D) array containing all attributes of the union of pools and
the second one- number of threads for all pools.

243

Every next turning to union initialization routine adds additional pool. The creation of new
union allocates array union_of_pools. Every column of this array contains 8 attributes for every thread
of all pools, in the sequence of including the pools in union. The mean of these attributes is:

- Potentially active threads from every pool- for every potentially active thread this parameter

is equal tol.

- This parameter has value 1 for all threads which initially will be active, for all the rest the
parameter will be zero.

- Determines belonging of the thread to appropriate pool

- Four serial elements from each column contain threads’ parameters [10].

- The last attribute contains address of variable representing counter of the pool. This counter
is necessary for indexing of sub-problems for each thread and subtask distribution in the
frame of the pool.

The optimal number of initial active threads for all pools must be less than number of

processors or equal. From other side the number of all created threads is usually bigger than their
number. Some of inactive threads of one pool could be eventually activated later on.

Dynamic pools control

The basic idea is for some pools not all created threads to be active when union is started
initially. These passive threads will stay active later on when the threads of some pool become passive
after finishing of the entire task.

Special function DynamicPoolsControl is developed. It controls the work of the threads of all
pools included in the union_of pools. The number of pools included in the union is determined in the
beginning. After that, all threads which can initially to be activated are started and begin to execute
calculations. Threads which are marked as initially inactive for some pools could be activated later on

After all initial active threads are started the parent thread transits in waiting condition using
the system function:

indeks= WaitForMultipleObjects(num_active, ha_end,WaitOne,Wait_infinite)+1

This function waits some events for finishing of thread calculations from all pools’ threads to
be signhaled. The number of these events is contained in variable num_active_threads and theirs
handlers in array ha_end. When control variable WaitOne has value .false. then the function
WaitForMultipleObjects wait for first signaled event and return the index of the element of ha_end
storing this event's handler. The respective thread is marked as inactive until next call to function
DynamicPoolsControl, which in our case is next step of simulation time. When all threads of particular
pool finish all calculations (for current step of time) and turn into inactive condition then the respective
solver completes the solving of problem. Released processors can migrate to inactive treads of other
pool occupied with heavier problem. By this way numbers of active threads are no more than available
processors.

Conclusion

Experiments with two actual ordinary differential equation systems integrators working
simultaneously are fulfilled out on this stage. The formal character of “union of pools” model allows to
be applied toward heterogenic pools used as models for different calculation tools.

Experiments with “unions of pools” with larger dimension are foreseen. Additional
improvement of the “union of pools” program model is under development for including other
possibilities for activation of different stages of calculations in multi-physic model simulations.

The model “union of pools” allows redistribution of released processors from finished solvers
toward solvers occupied with more heavy problems in course of calculation processes. After finishing
one calculation stage from respective solver other calculation stage is possible on the base of using
other solver by starting its threads and engaging released processors. When one solver finishes, the
system continue his work with no idle processors due to proposed approach.

The “union of threads pools” is abstraction which is possible to be applied to set of solvers in
the frame of multi-physic simulations.

References:

1. Boville, B.A. and P.R., Gent. The NCAR Climate System Model, Version One. Journal of Climate 11.6
1998, pp. 1115-1130.

244

9.

Craig, A.P.,, Jacob, R., Kauffman, B., Bettge, T., Larson, J., Ong, E., & He, Y. CPL6: The new
extensible, high performance parallel coupler for the Community Climate System Model. International
Journal of High Performance Computing Applications, 19(3), 2005, 309-327.

Collins, W.D., P.J. Rasch, B.A. Boville, J.J. Hack, J.R. McCaa, D.L. Williamson, B.P. Briegleb, C.M.
Bitz, S.-J. Lin, and M., Zhang. The formulation and atmospheric simulation of the Community
Atmosphere Model version 3 (CAM3). Journal of Climate 19, no. 11, 2006, pp. 2144-2161.

Bernholdt, D.E., B.A,, Allan, R., Armstrong, F., Bertrand, K., Chiu, T.L. Dahlgren, K., Damevski et
al. A component architecture for high-performance scientific computing. International Journal of High
Performance Computing Applications 20, no. 2, 2006, 163-202.

Mclnnes, L.C.,, B.A. Allan, R. Armstrong, S.J. Benson, D.E. Bernholdt, T.L. Dahlgren, L.F., Diachin
et al. Parallel PDE-based simulations using the Common Component Architecture. In Numerical Solution
of Partial Differential Equations on Parallel Computers. Springer Berlin Heidelberg, 2006, pp. 327-38.

Portegies, Z.,S., S., McMillan, S., Harfst, D., Groen, M., Fujii, B.O., Nuallain, E., Glebbeek et al. A
multiphysics and multiscale software environment for modeling astrophysical systems. New Astronomy
14(4), 2009, 369-378.

Coppola, B.T., S., Dupont, K., Ring, F., Stoner, 2009. Assessing satellite conjunctions for the entire
space catalog using COTS multi-core processor hardware. In: AAS 09-374, AAS-AIAA Astrodynamics
Specialist Conference, Pittsburgh, August 2009.

. Bradley, B. K., B.A. Jones, Beylkin, G. & P. Axelrad, A new numerical integration technique in

astrodynamics. In Proceedings of the 22nd Annual AAS/AIAA Spaceflight Mechanics Meeting, 2012, pp.
1-20.

Escobar, D., A., Agueda, L., Martin and F.M., Martinez, Efficient ALL vs. ALL collision risk analyses. In
Advanced Maui Optical and Space Surveillance Technologies Conference, vol. 1, 2011, p. 32.

10. Atanassov, A.M., Parallel, adaptive, multi-object trajectory integrator for space simulation applications.

Advances in Space Research 54, 2014, pp. 1581-1589.

11. Atanassov, A.M., Parallel Solving of Situational Problems for Space Mission Analysis and Design,

proceedings of 9" scientific conference Space Ecology Safety 2013, 283—-288.

12.Rauber, T., G., Runger, Parallel Programming: For Multicore and Cluster Systems. 2010, Springer.
13.RlUnger, G., Parallel programming models for irregular algorithms. Parallel Algorithms and Cluster

Computing. Springer Berlin Heidelberg, 2006. 3-23.

Appendix

SUBROUTINE DynamicPoolsControl(union_atr)

USE DFlib
USE DFmt

integer union_atr(2),union_of_pools(-2:5,union_atr(2))
integer copy_of_union[ALLOCATABLE](:,:)
integer ha_end[ALLOCATABLE](:)
logical WaitOne/.false./,WaitAll/.true./
integer object,ha_ends(union_atr(2))
integer address,union_threads_num, adr_glob_count,glb_counter
POINTER(address,union_of_pools); POINTER(adr_glob_count,glb_counter)
address= union_atr(1)
union_threads_num= union_atr(2); num_pools= 1
DO i=1,union_threads _num-1
IF(union_of_pools(0,i).NE.union_of_pools(0,i+1)) THEN ! checking pools number &
num_pools= num_pools + 1 I zeroing glb_counters for every
adr_glob_count= union_of_pools(5,i); glb_counter= 0! pool
ENDIF
END DO; adr_glob_count= union_of_pools(5,union_threads_num); glb_counter= 0;
ALLOCATE(copy_of_union(-2:5,union_atr(2))); copy_of_union= union_of_pools

IF(num_pools.NE.1) THEN

num_active= 0; ALLOCATE(ha_end(union_threads_num))
a: DO i=1,union_threads_num
IF(union_of_pools(-1,i).EQ.1) THEN !
k= SetEvent(union_of_pools(3,i)); num_active= num_active + 1
ha_end(num_active)= union_of_pools(4,i);
ENDIF
END DO a;'ha_end(1:nth)= thread_par(1:nth)%ha_end
p: DO WHILE(num_pools.NE.1);

indeks= WaitForMultipleObjects(num_active, ha_end,WaitOne,Wait_infinite)+1
object= ha_end(indeks)
g: DO i=1,union_threads_num
IF(object.EQ.copy_of _union(4,i)) THEN ! excluding of finished threat from one pool
copy_of_union(-2,i)= 0 ! the thread is out

245

from_pool= copy_of_union(0,i) '0' contain number of pool
r: DO j=1,union_threads_num ! finding threat from other pool and starting
IF(copy_of_union(0,j).NE.from_pool. AND.copy_of_union(-1,j).EQ.0) THEN
copy_of_union(-1,j)=1
k= SetEvent(copy_of_union(3,j)) ! Start thread from other pool
num_active= 0
DO I=1,union_threads_num;
IF(copy_of_union(-1,1).EQ.1.AND.copy_of _union(-2,l).NE.Q) THEN !
num_active= num_active + 1
ha_end(num_active)= copy_of_union(4,l);

ENDIF
END DO;
EXIT q
ENDIF
END DO r
EXIT q
ENDIF
END DO q
i0= 1; num_pools=0 ! Determination the number of the left pools

g2: DO i=1,union_threads_num-1
IF(copy_of_union(0,i).NE.copy_of_union(0,i+1).AND.i+1.LT.union_threads_num) THEN
num=0
DO j=i0,i-1
IF(copy_of_union(-1,j).EQ.1.AND.copy_of_union(-2,j).NE.O) THEN; num= num + 1!
END DO; i0=1i + 1; IF(num.GT.0) num_pools= num_pools + 1
ELSEIF(copy_of_union(0,i).EQ.copy_of_union(0,i+1).AND.i+1.EQ.union_threads_num) THEN

num=0
DO j=i0,i-1
num=num + 1
ENDIF
END DO; IF(num.GT.0) num_pools= num_pools + 1
ENDIF
END DO g2
END DO p

object= WaitForMultipleObjects(num_active, ha_end,WaitAll,Wait_infinite)!+1
s: DO i=1,num_active lunion_threads_num
k= ResetEvent(ha_end(i)) ! Event for waiting a finish of thread
END DO s
DEALLOCATE(copy_of_union)
ELSE ! Only one pool of threads
c: DO i=1,union_threads_num
k= SetEvent(union_of_pools(3,i));
END DO c; ha_ends= union_of_pools(4,:)
object= WaitForMultipleObjects(union_threads_num, ha_ends,WaitAll,Wait_infinite)
b: DO i=1,union_threads_num
k= ResetEvent(union_of_pools(4,i)) ! Event for waiting a finish of thread
END DO b;
ENDIF
END SUBROUTINE DynamicPoolsControl

246

